教案的准备可以让我们更好地安排课堂时间,合理分配教学任务,其实,一份好的教案应当能够激发学生的学习兴趣,下面是大爱范文网小编为您分享的七年级上数学教案优质6篇,感谢您的参阅。
七年级上数学教案篇1
教学目的:
(一)知识点目标:
1.了解正数和负数是怎样产生的。
2.知道什么是正数和负数。
3.理解数0表示的量的意义。
(二)能力训练目标:
1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。
2.会用正、负数表示具有相反意义的量。
(三)情感与价值观要求:
通过师生合作,联系实际,激发学生学好数学的热情。
教学重点:
知道什么是正数和负数,理解数0表示的量的意义。
教学难点:
理解负数,数0表示的量的意义。
教学方法:
师生互动与教师讲解相结合。
教具准备:
地图册(中国地形图)。
教学过程:
引入新课:
1.活动:由两组各派两名同学进行如下活动:一名按老师的'指令表演,另一名在黑板上速记,看哪一组记得最快、?
内容:老师说出指令:
向前两步,向后两步;
向前一步,向后三步;
向前两步,向后一步;
向前四步,向后两步。
如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。
[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。
讲授新课:
1.自然数的产生、分数的产生。
2.章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。
3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加上“十”(正号)表示正数。
举例说明:3、2、0.5、等是正数(也可加上“十”)
-3、-2、-0.5、-等是负数。
4、数0既不是正,也不是负数,0是正数和负数的分界。
0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。
5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材p5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地x银行的存折,说出你知道的信息。
巩固提高:练习:课本p5练习
课时小结:这节课我们学习了哪些知识?你能说一说吗?
课后作业:课本p7习题1.1的第1、2、4、5题。
活动与探究:在一次数学测验中,x班的平均分为85分,把高于平均分的高出部分记为正数。
(1)美美得95分,应记为多少?
(2)多多被记作一12分,他实际得分是多少?
七年级上数学教案篇2
教学目标
1、知识与技能
(1)在现实情境中,认识角是一种基本的几何图形,理解角的概念,学会角的表示方法、
(2)认识角的度量单位度、分、秒,会进行简单的换算和角度计算、
2、过程与方法
提高学生的识图能力,学会用运动变化的观点看问题、
3、情感态度与价值观
经历在现实情境中认识角的数学活动过程,感受图形世界的丰富多彩,增强审美意识,激发学生的求知欲、
重、难点与关键
1、重点:会用不同的方法表示一个角,会进行角度的换算是重点、
2、难点:角的表示、角度的`换算是难点、
3、关键:学会观察图形是正确表示一个角的关键、
教具准备
多媒体设备、量角器、时钟、四棱锥、
教学过程
一、引入新课
1、观察时钟、四棱锥、
2、提出问题:
时钟的时针与分针,棱锥相交的两条棱,都给我们什么样的平面图形的形象?请把它画出来、
学生活动:进行独立思考、画图,然后观看教师的演示过程、
教师活动:用多媒体演示角的形成过程:一条射线oa绕端点o旋转到ob的位置,得到的平面图形──角、
板书:角、
二、新授
1、角的概念、
(1)提出问题:
从上面活动过程中,你能知道角是由什么图形组成的吗?
学生回答:两条射线、
(2)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边、(如下图)
2、角的表示、
学生活动:阅读课本第137页有关内容,了解角的表示方法、
教师活动:讲解角的不同表示方法,着重讲解一个顶点有多个角的表示方法、
请用适当的方法表示下图中的每个角、
学生活动:请一个学生板书练习,其余学生独立练习、
教师活动:巡视学生练习情况,给予评价,对多数同学作出肯定评价、
学生活动:阅读课本第138页思考题,进行小组交流,获得问题结论、
教师活动:参与学生交流,并用多媒体演示平角、周角的形成过程,启发引导学生对问题进行探索,并对学生讨论结果进行评价、
答案:分别形成平角、周角、
3、角的度量、
教师活动:指导学生阅读课本p138页内容,讲解角的度量方法及度、分、秒的换算、
板书:1周角=_____,1平角=_____,1=____,1=____、
学生活动:思考并完成上面的填空、
例:把一个周角7等分,每一份是多少度的角(精确到分)?
教师讲解计算过程、
三、巩固练习
1、课本第139页练习、
2、计算:(1)4839+6741
(2)90-781940
(3)2230 (4)176523、
此:此练习由学生独立完成,在练习过程中充分地进行小组交流以解决练习过程中的疑难,教师巡视过程中对个别学习困难的学生及时给以答疑解惑,并请学生板书后再讲评、
3、想一想:时钟在5点15分时,时钟的时针与分针所成的角是多少度?
师生互动:观察时钟在5点15分时,时针与分针所处位置,教师引导、启发学生先从时针在分针转动到15分时,分针转过的角度与时针转过的角度的关系,并请学生在小组中进行交流,从而得出正确的答案、
答案:76、5、
四、课堂小结
师生互动,完成本节课的小结:
1、什么是角?组成角的图形是什么?如何表示一个角?
2、本节课还复习了平面、周角?怎样得到这两种角?
3、角的度量单位是什么?它们是如何换算的?
五、作业布置
1、课本第144页习题4、3第1、2、3、4题、
2、选用课时作业设计、
第一课时作业设计
一、填空题、
1、如下左图所示,把图中用数学表示的角,改用大写字母表示分别是________、
2、将上右图中的角用不同的方法表示出来,填入下表:
3 4
bca abc
3、( )=_____=_____6000=______=_______、
二、选择题、
4、在钟表上,1点30分时,时针与分针所成的角是( )、
a、150 b、165 c、135 d、120
5、下列各角中,不可能是钝角的角是( )、
a、 周角 b、 平角 c、 钝角 d、 直角
三、解答题、
6、计算:
(1)5328+4732 (2)1750-327
(3)1524 (4)31425(精确到1)、
7、如下图,分别确定四个城市相应钟表上时针与分针所成角的度数、
8、想一想,做一做、
(1)用字母表示图中的每个城市、
(2)请用字母在下图分别表示以北京为中心的每两个城市之间的夹角、
答案:
一、1、ade,bde,ced,b,aed
2、5 bce bac bad
3、7、5 450 100 ( )
二、4、c 5、d
三、6、(1)101 (2)1423 (3)77 (4)62024
7、30,0,120,90 8、略
七年级上数学教案篇3
一、教学目标
1.使学生认识平行线的特征,能灵活地利用平行线的三个特征解决问题.
2.继续对学生进行初步的数学语言的训练,使学生能用数学语言叙述平行线的特征,并能用初步的数学语言进行简单的逻辑推理.
3.使学生理解平移的思想,知道图形经过平移以后的位置,并能画出平移后的图形.
4.通过利用“几何画板”所做的数学实验的演示等,培养学生的观察能力,即在图形的`运动变化中抓住图形的本质特征,发展学生逻辑思维能力,通过实际问题的解决培养学生分析问题和解决问题的能力.
5.通过课堂设疑,培养学生勇于发现、探索新知识的精神.
6.通过创设问题情境,让学生亲身体验、直观感知并操作确认,激发学生自主学习的欲望,使之爱学、会学、学会、会用.
二、教学重点
平行线的三个特征.
三、教学难点
灵活地利用平行线的三个特征解决问题.
四、教学过程
老师:同学们,如图所示,是我们大连的马栏河,河上有两座桥:新华桥和光明桥.河的两岸是两条平行的公路:黄河路与高尔基路,某测量员在a点测得.如果你不通过测量,能否猜出的度数是多少?
王亮:.
老师:他到底猜得对不对呢?下面我们要先做一个实验,拿出尺子,画两条平行的直线a、b,第三条直线l和这两条直线相交,标出所得到的角,用量角器量出各个角的度数,观察当两直线平行时,各种角有什么关系.
学生动手按要求做实验.
老师:将你发现的规律与组内同学进行交流.
学生以小组为单位进行交流与研究.
老师:请每组派一名代表将你们得到的规律写到黑板上,并结合你画的图讲解你们组的结论.
第1组学生代表:如果两直线平行,同位角就相等。
七年级上数学教案篇4
教学目的
通过天平实验,让学生在观察、思考的基础上归纳出方程的两种变形,并能利用它们将简单的方程变形以求出未知数的值。
重点、难点
1.重点:方程的两种变形。
2.难点:由具体实例抽象出方程的两种变形。
教学过程
一、引入
上一节课我们学习了列方程解简单的应用题,列出的方程有的我们不会解,我们知道解方程就是把方程变形成x=a形式,本节课,我们将学习如何将方程变形。
二、新授
让我们先做个实验,拿出预先准备好的天平和若干砝码。
测量一些物体的质量时,我们将它放在天干的左盘内,在右盘内放上砝码,当天平处于平衡状态时,显然两边的质量相等。
如果我们在两盘内同时加入相同质量的砝码,这时天平仍然平衡,天平两边盘内同时拿去相同质量的砝码,天平仍然平衡。
如果把天平看成一个方程,课本第4页上的图,你能从天平上砝码的变化联想到方程的变形吗?
让同学们观察图(1)的左边的天平;天平的左盘内有一个大砝码和2个小砝码,右盘上有5个小砝码,天平平衡,表示左右两盘的质量相等。如果我们用x表示大砝码的质量,1表示小砝码的质量,那么可用方程x+2=5表示天平两盘内物体的质量关系。
问:图(1)右边的天平内的砝码是怎样由左边天平变化而来的?它所表示的方程如何由方程x+2=5变形得到的?
学生回答后,教师归纳:方程两边都减去同一个数,方程的解不变。
问:若把方程两边都加上同一个数,方程的解有没有变?如果把方程两边都加上(或减去)同一个整式呢?
让同学们看图(2)。左天平两盘内的砝码的质量关系可用方程表示为3x=2x+2,右边的天平内的砝码是怎样由左边天平变化而来的'?
把天平两边都拿去2个大砝码,相当于把方程3x=2x+2两边都减去2x,得到的方程的解变化了吗?如果把方程两边都加上2x呢?
由图(1)、(2)可归结为;
方程两边都加上或都减去同一个数或同一个整式,方程的解不变。
让学生观察(3),由学生自己得出方程的第二个变形。
即方程两边都乘以或除以同一个不为零的数,方程的解不变:
通过对方程进行适当的变形.可以求得方程的解。
例1.解下列方程
(1)x-5=7 (2)4x=3x-4
(1)解两边都加上5,x,x=7+5 即 x=12
(2)两边都减去3x,x=3x-4-3x 即 x=-4
请同学们分别将x=7+5与原方程x-5=7;x=3x-4-3,与原方程4x=3x-4比较,你发现了这些方程的变形。有什么共同特点?
这就是说把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。
注意:“移项’’是指将方程的某一项从等号的左边移到右边或从右边移到左边,移项时要先变号后移项。
例2.解下列方程
(1)-5x=2 (2) x=
这里的变形通常称为“将未知数的系数化为1”。
以上两个例题都是对方程进行适当的变形,得到x=a的形式。
练习:
课本第6页练习1、2、3。
练习中的第3题,即第2页中的方程①先让学生讨论、交流。
鼓励学生采用不同的方法,要他们说出每一步变形的根据,由他们自己得出采用哪种方法简便,体会方程的不同解法中所经历的转化思想,让学生自己体验成功的感觉。
三、巩固练习
教科书第7页,练习
四、小结
本节课我们通过天平实验,得出方程的两种变形:
1.把方程两边都加上或减去同一个数或整式方程的解不变。
2.把方程两边都乘以或除以(不等零)的同一个数,方程的解不变。第①种变形又叫移项,移项别忘了要先变号,注意移项与在方程的一边交换两项的位置有本质的区别。
五、作业
教科书第7—8页习题6.2.1第1、2、3。
七年级上数学教案篇5
教学内容:
小学数学六年级下册p112-113练习二十二1~7题。
教学目标:
1.通过练习,进一步掌握统计与概率的相关知识。
2.能解决统计与概率相关的简单实际问题。
3.感受数学与生活的紧密联系,提高学习数学的兴趣和学好数学的自信心。
重点、难点:
1.掌握统计与概率的基本知识和方法。
2.灵活应用统计与概率的相关知识解决实际问题。
教学准备:
教学挂图,小黑板,自主检测题等。
教学过程
一、情境引入,回顾再现
1.回顾统计与概率的相关知识。
组织学生简单回忆,说一说:
本单元学习了统计图,统计表;平均数,中位数,众数;以及游戏公平,可能性等概率问题。
2.揭示课题。
师:那么这节课我们就来对本部分知识进行练习。
板书课题:统计与概率练习
二、分层练习,强化提高
(一)基本练习。
1.
(1)该公司去年全年的销售情况如何?
(2)该公司的发展前景怎样?
(3)你还能提出哪些问题?
①组织学生独立解答.
②汇报订正,说解题思路。
教师引导学生从图中的变化趋势上来分析问题,从而得出结论:该公司去年总体经营情况很好,产量和销量不断增长,第四季度增长幅度较快,而且出现了销量大于产量的良好势头。由此可以作出预测:该公司在未来的一段时间内将有良好的发展。
2.
①组织学生独立解答.
②汇报订正,说解题思路
教师注意提醒学生考虑事件发生的等可能性以及几率的多少。
(二)综合练习。
①组织学生独立解答第一小题。
②小组交流讨论,解答第二小题。
师根据学生的汇报,让学生明确在研究一组数据的分布情况时,用平均数、中位数或众数作为数据的代表都是可以的。但是在一般情况下,用平均数作为数据代表的时候较多,它与这组数据中的每个数据都有关系,但它易受极端数据的影响,所以为了减少这种影响,在评分时就采取去掉一个分和一个最低分,再计算平均数,这样做是合理的。
①组织学生独立思考。
②小组交流讨论,汇报结果。
本题是有关众数的应用的.练习。从进货和销售数量的差来看,尺码是35、37、39三种型号的鞋进货有些多了,下一次进货时可考虑适当降低数量;但从销量来看,37码的鞋仍然排名第一,36和38码的列第二、三名,所以每种型号的鞋的进货量的比例总体上不会有大的变化。研究一组数据的频数大小分布情况时,应用了众数的知识。
(三)提高练习。
①组织学生独立思考。
②小组交流讨论,汇报结果。
六(2)班同学的血型情况如图,
(1)从图中你能得到哪些信息?
(2)该班有50人,各种血型有多少人?
本题是有关可能性的习题,对简单事件发生的可能性作出预测。从两队的历史战绩来看,各是两胜一平两负,不相上下;从这一点来判断,两队获胜的可能性都是二分之一。但是,仔细观察可以发现:在离比赛日最近的两场比赛中均是乙队获胜,说明最近乙队的状态好于甲队,由此可以预测:乙队获胜的可能性稍大一些。这种判断也有一定道理。
三、自主检测,评价完善
自主检测
1.填空:
(1)人们对收集的统计数据经过分析整理后可以制成( )还可以制成( )
(2)( )统计图可以清楚地表示出各部分同总数之间的关系。
(3)( )统计图既能表示出数量的多少,又能反映出数量变化情况
2.选择:
(1)评价一个班整体学习成绩情况,看( )比较合适?
a.平均数b.中位数c.众数
(2)为了清楚地表示出20xx年各月平均气温变化情况,应绘制( )。
a.条形b.折线c.扇形
3.做一做:
有a—j 10张字母卡片,小明翻字母卡片,小红猜小明的字母卡片,如果小红猜对,小红获胜,如果小红猜错了,小明获胜。
(1)你认为这个游戏规则对双方公平吗?对谁有利?
(2)请设计一个双方公平的游戏规则。
四、课堂总结
1.教师评价:通过本节课的练习大都分同学掌握较好,值得表扬。
2.学生谈收获:通过本节课练习你有什么新的收获?
板书设计:
统计与概率练习
统计表
统计图:条形统计图;折线统计图;扇形统计图
统计量:平均数;中位数;众数
可能性:等可能;公平;
作业设计
基础:
1.简单的统计图有( )统计图、( )统计图和( )统计图。
2.( )统计图是用长短不同、宽窄一致的直条表示数量,从图上很容易看出( )。
3. 4、7.7、8.4、6.3、7.0、6.4、7.0、8.6、9.1这组数据的众数是( ),中位数是( ),平均数是( )。
4.在一组数据中,( )只有一个,有时( )不止一个,也可能没有( )。(填众数或中位数)
七年级上数学教案篇6
第一章教学评价指导
一、总体设计思路:
1、通过观察现实生活中的物体,认识基本几何体及点、线、面。
2、通过展开与折叠活动,认识棱柱的基本性质。
3、通过展开与折叠、切与截、从不同方向看等数学实践活动,积累数学活动经验。
4、通过平面图形与空间几何体相互转换的活动过程中,建立空间观念,发展几何直觉。
5、由空间到平面,认识常见的平面图形.
——观察、操作、描述、想象、推理、交流.
二、总体教学建议:
1、充分挖掘图形的现实模型,鼓励学生从现实世界中“发现”图形.
2、充分让学生动手操作、自主探索、合作交流,以积累有关图形的经验和数学活动经验,发展空间观念。
其中动手操作是学习过程中的重要一环---在学生学习开绐阶段,它可能帮助学生认识图形,发展空间观念,以后,它可以用来验证学生对图形的空间想象。因此,学习之初,教师要鼓励学生先动手、后思考,以后,则鼓励学生先想象,再动手。
3、教学中应有意识地满足多样化的学习需要,发展学生的个性。
如开展正方体表面展开、棱柱模型制作等教学。
几点说明:
1、为什么安排展开与折叠、切与截、从不同方向看等那么多实践活动,目的是什么?
2、教学中要处理好动手操作和思考想象的关系?
3、生活中的立体图形性质的认识过程
用自己语言充分地描述----点、线、面之间的关系-----通过操作归纳出比较准确的数学语言-------更好地想象图形。
4、展开与折叠的目的与处理(想和做的关系:先做后想----先想后做)
三、总体评价建议
1、关注学生在展开与折叠、切截、从不同方向看等数学活动中空间观念的发展。
2、关注学生是否能正确认识现实生活中大量存在的柱、锥、球的实物模型。
3、关注学生在观察、操作、想象等数学活动中的主动参与的程度以及是否愿意与同伴交流各自的想法。
4、要帮助学生建立自己的数学学习成长记录袋,让他们反思自己的数学学习情况和成长的历程。
四、每一节的教学目标、重难点、教学建议与评价方法
第一节:生活中的立体图形
第一课时:
教学目标:
1.经历从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩。
2.在具体情境中认识圆柱、圆锥、正方体、长方体、棱柱、球,并能用自己的语言描述它们的某些特征。
3.了解圆柱与圆锥、棱柱与圆柱的相同点和不同点。
重点:图形的识别。
难点:图形的分类。
教学建议:
1.多给学生创设一些情境,使学生于这些情景中认识棱柱、棱锥、圆锥、球等几何体,学会从复杂的组合图形中把这些图形分离出来,或者让学生辨认复杂图形是由哪些基本图形组合而成的;
2.这里对图形的认识是初步的,不必给予精确定义。
评价建议:
1. 过程性:关注学生从现实世界中抽象出图形的过程,关注学生能否从现实世界中发现图形;
2.知识性:正确辨认圆柱、圆锥、正方体、长方体、棱柱和球这些几何体,并能用自己的语言描述它们的特征。
第二课时:
教学目标:
1.通过大量的实例, 丰富对点、线、面的认识;
2.体会点、线、面之间的关系。
3.会识别平面和曲面、直线和曲线;
4.了解“点动成线”、“线动成面”、“面动成体”的现象。
重点:点、线、面的认识。
难点:用运动的观点描述它们的形成过程。
教学建议:
1.几何中的点只有位置,没有大小。当我们把日常生活总的某个物体看作点时,我们只是强调其位置,而忽略了它们的大小。对于线、面亦是如此。在教学时可以通过p5页下面一幅图说说这方面的思想,让学生领会即可;
2.点、线、面间的关系,书上从静止和运动两个方面来说明的,可让学生多举一些生活中的实例加以说明。
评价建议:
1.过程性:关注并鼓励学生参与到课堂活动中来,通过自己的主动思考,体会点、线、面是构成图形的基本元素。
2.知识性:从静态和动态两个角度了解点、线、面的关系,会识别平面和曲面,直线和曲线。
第二节:展开与折叠
第一课时:
教学目标:
1.经历折叠、模型制作等活动, 发展空间观念, 积累数学活动经验;
2.在操作活动中认识棱柱的某些特性;
3.了解(直)棱柱的侧面展开图, 能根据展开图判断和制作简单的立体模型。
重点:通过活动认识归纳出棱柱的基本性质, 并能感受到研究空间问题的
思维方法
难点:正确判断哪些平面图形可折叠为棱柱
教学建议:
1.做一做是了解棱柱特性的一个重要手段,教学时应让学生动手折叠;
2.建议先让学生观察折叠好的棱柱,说一说棱柱有哪些特点,再根据书上的问题串归纳;
3.想一想应让学生先猜想说明理由后再操作确认;
4.棱柱、直棱柱、正棱柱这三个概念不必向学生说明,教师叙述时注意不能混为一谈。
评价建议:
1.过程性:关注学生在做一做中动手能力的培养,以及在观察、想象、归 纳等活动中合作交流意识的形成。
2.知识性:了解棱柱的有关概念以及基本特性,能应用棱柱的基本特性解决图形折叠的某些问题。
第二课时:
教学目标:
1.了解立体图形与平面图形的关系,会把正方体的表面展开为平面图形,进而会把棱柱表面展开成平面图形;
2.了解圆柱、圆锥的侧面展开图,能根据展开图判断立体模型;
3.通过展开与折叠实践操作,积累数学活动经验;在平面图形与空间几何体表面转换的过程中,初步建立空间观念,发展几何直觉。
重点:会把正方体表面展开成平面图形。
难点:按照预定的形状把正方体展开成平面图形。
教学建议:
1.对棱柱的各种展开方式不必求全;
2.注重对图形的辨别,不必侧重于十一种平面展开图的分类。
评价建议:
1.过程性:关注学生在正方体表面展开活动中空间观念的发展,鼓励学生制作长方体、正方体、圆柱和圆锥等几何体的模型。
2.知识性:能把正方体表面展开成平面图形,了解圆柱、圆锥的侧面展开图。
第三节:截一个几何体
教学目标:
1.通过经历对几何体切截的实践过程,让学生体验面与体之间的转换,探索截面形状与切截方向之间的联系;
2.于面与体的转换中丰富几何直觉和数学活动经验,发展学生的空间观念和创造性思维能力;
3.培养学生主动探索、动手实践、勇于发现、合作交流的意识。
重点:理解截面的含义。
难点:根据所给的条件做出它的截面。
教学建议:
1.由于学生的空间想象能力和识图能力不强,讲截面问题时,必须充分运用实物和动手实验;
2.由于截面形状与截面的位置密切相关,教学时必须把截面的位置交代清楚。
评价建议:
1.过程性:注重学生在对几何体的切截过程中空间观念和创造性思维能力的培养。
2.知识性:了解截面的意义以及截面的形状是由几何体的形状与截面的位置决定的。
第四节:从不同的方向看
第一课时:
教学目标:
1.学生经历从不同方向观察几何物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果,发展空间观念,能与他人的交流过程中,合理清晰地表达自己的思维过程;
2.能识别简单物体的三视图,体会物体三视图的合理性;
3.会由实物画立方体及其简单组合的三视图;
4.渗透图形的二维空间与三维空间的转换。
重点:体会从不同方向看同一物体可能看到不同的结果。
难点:能画立方体及其简单组合的三视图。
教学建议:
1.创设丰富的情境,让学生于观察、交流中体会不同方向看某个(或某组)物体时看到的图像可能是不同的;
2.由于学生想象能力薄弱,建议多利用实物模型帮助学生认识三视图。
评价建议:
1.过程性:注重学生通过观察等活动自己认识到同一物体从不同方向看可能看到不同的图形。关注学生用语言清晰表达自己思维过程的能力的培养。
2. 知识性:认识到从不同的方向观察同一物体时,能看到的图形往往是不同的。正确认识三视图的意义。
第二课时:
教学目标:
1.会画由正方体组成的较复杂图形的各视图;
2.能根据正方体所搭的几何体的俯视图, 画出相应几何体的主视图和左视图;
3.会根据(由正方体组成的)物体的三视图去辨认该物体的形状。
重点:根据主视图、左视图、俯视图相象出实物图形。
难点:确定组合体中小立方块的个数。
教学建议:
1.做一做部分建议按先摆、再看、后画的方式进行处理;
2.例1建议先让学生猜想,再通过摆一摆验证,最后归纳一般方法。
评价建议:
1.过程性:关注学生在画三视图过程中空间想象能力的培养,以及在观察、想象、交流等活动中的主动参与程度。
2.知识性:会画由立方块组成的简单几何体的三视图,能根据俯视图正确画出主视图和左视图。
第五节:生活中的平面图形
教学目标:
1.经历从现实世界中抽象出平面图形的过程,感受图形世界的丰富多彩;
2.在具体情境中认识多边形、扇形,了解圆与扇形的关系;
3.通过对多边形的分割,感受把复杂图形转化为简单图形的方法;
4.在丰富的活动中发现有条理的思考。
重点:多边形、弧、扇形的概念。
难点:把复杂图形转化为简单图形的方法。
会计实习心得体会最新模板相关文章: