大爱范文网 >工作范文

高一数学教案优秀教案5篇

编写教案时,教师需反思以往教学经验,避免重复错误,要想让教案更具实效性,教师们需要进行充分的课前准备,大爱范文网小编今天就为您带来了高一数学教案优秀教案5篇,相信一定会对你有所帮助。

高一数学教案优秀教案5篇

高一数学教案优秀教案篇1

一、教材分析

函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。

本节《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。也为进一步学习函数这一章的其它内容提供了方法和依据。

二、重难点分析

根据对上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是本章的难点。

三、学情分析

1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。

2、不利因素:函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的'能力比较高,学生学起来有一定的难度。

四、目标分析

1、理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。

2、通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。

3、通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。

五、教法学法

本节课的教学以学生为主体、教师是数学课堂活动的组织者、引导者和参与者,我一方面精心设计问题情景,引导学生主动探索。另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。

学法方面,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。

高一数学教案优秀教案篇2

一、教学目标:

1、知识与技能

(1)理解指数函数的概念和意义;

(2)与的图象和性质;

(3)理解和掌握指数函数的图象和性质;

(4)指数函数底数a对图象的影响;

(5)底数a对指数函数单调性的影响,并利用它熟练比较几个指数幂的大小

(6)体会具体到一般数学讨论方式及数形结合的思想。

2、情感、态度、价值观

(1)让学生了解数学来自生活,数学又服务于生活的哲理。

(2)培养学生观察问题,分析问题的能力。

二、重、难点:

重点:

(1)指数函数的概念和性质及其应用。

(2)指数函数底数a对图象的影响。

(3)利用指数函数单调性熟练比较几个指数幂的大小。

难点:

(1)利用函数单调性比较指数幂的大小。

(2)指数函数性质的归纳,概括及其应用。

三、教法与教具:

①学法:观察法、讲授法及讨论法。

②教具:多媒体。

四、教学过程:

第一课时

讲授新课

指数函数的定义

一般地,函数(>0且≠1)叫做指数函数,其中是自变量,函数的定义域为r。

提问:在下列的关系式中,哪些不是指数函数,为什么?

(1)(2)(3)

(4)(5)(6)

(7)(8)(>1,且)

小结:根据指数函数的定义来判断说明:因为>0,是任意一个实数时,是一个确定的实数,所以函数的定义域为实数集r。

若t;0,如在实数范围内的函数值不存在。

若=1,是一个常量,没有研究的意义,只有满足的形式才能称为指数函数,不符合我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究。先来研究的情况。

下面我们通过用计算机完成以下表格,并且用计算机画出函数的图象。

再研究,0t;t;1的情况,用计算机完成以下表格并绘出函数的图象。

从图中我们看出。

通过图象看出实质是上的。

讨论:的图象关于轴对称,所以这两个函数是偶函数,对吗?

②利用电脑软件画出的函数图象。

练习p711,2

作业p76习题3-3a组2

课后反思:

高一数学教案优秀教案篇3

一、教材分析

本节课选自《普通高中课程标准数学教科书-必修1》(人教a版)《1.2.1函数的概念》共3课时,本节课是第1课时。

生活中的许多现象如物体运动,气温升降,投资理财等都可以用函数的模型来刻画,是我们更好地了解自己、认识世界和预测未来的重要工具。

函数是数学的重要的基础概念之一,是高等数学重多学科的基础概念和重要的研究对象。同时函数也是物理学等其他学科的重要基础知识和研究工具,教学内容中蕴涵着极其丰富的辩证思想。

二、学生学习情况分析

函数是中学数学的主体内容,学生在中学阶段对函数的认识分三个阶段:

(一)初中从运动变化的角度来刻画函数,初步认识正比例、反比例、一次和二次函数;

(二)高中用集合与对应的观点来刻画函数,研究函数的性质,学习典型的对、指、幂和三解函数;

(三)高中用导数工具研究函数的单调性和最值。

1.有利条件

现代心理学的研究认为,有效的概念教学是建立在学生已有知识结构的基础上的,因此教师在设计教学的过程中必须注意在学生已有知识结构中寻找新概念的固着点,引导学生通过同化或顺应,掌握新概念,进而完善知识结构。

初中用运动变化的观点对函数进行定义的,它反映了历人们对它的一种认识,而且这个定义较为直观,易于接受,因此按照由浅入深、力求符合学生认知规律的内容编排原则,函数概念在初中介绍到这个程度是合适的。也为我们用集合与对应的观点研究函数打下了一定的基础。

2.不利条件

用集合与对应的观点来定义函数,形式和内容上都是比较抽象的,这对学生的理解能力是一个挑战,是本节课教学的一个不利条件。

三、教学目标分析

课标要求:通过丰富实例,进一步体会函数是描述变量之间的'依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.

1.知识与能力目标:

⑴能从集合与对应的角度理解函数的概念,更要理解函数的本质属性;

⑵理解函数的三要素的含义及其相互关系;

⑶会求简单函数的定义域和值域

2.过程与方法目标:

⑴通过丰富实例,使学生建立起函数概念的背景,体会函数是描述变量之间依赖关系的数学模型;

⑵在函数实例中,通过对关键词的强调和引导使学发现它们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.

3.情感、态度与价值观目标:

感受生活中的数学,感悟事物之间联系与变化的辩证唯物主义观点。

四、教学重点、难点分析

1.教学重点:对函数概念的理解,用集合与对应的语言来刻画函数;

重点依据:初中是从变量的角度来定义函数,高中是用集合与对应的语言来刻画函数。二者反映的本质是一致的,即“函数是一种对应关系”。但是,初中定义并未完全揭示出函数概念的本质,对y?1这样的函数用运动变化的观点也很难解释。在以函数为重要内容的高中阶段,课本应将函数定义为两个数集之间的一种对应关系,按照这种观点,使我们对函数概念有了更深一层的认识,也很容易说明y?1这函数表达式。因此,分析两种函数概念的关系,让学生融会贯通地理解函数的概念应为本节课的重点。

突出重点:重点的突出依赖于对函数概念本质属性的把握,使学生通过表面的语言描述抓住概念的精髓。

2.教学难点:

第一:从实际问题中提炼出抽象的概念;

第二:符号“y=f(x)”的含义的理解.

难点依据:数学语言的抽象概括难度较大,对符号y=f(x)的理解会受到以前知识的负迁移。

突破难点:难点的突破要依托丰富的实例,从集合与对应的角度恰当地引导,而对抽象符号的理解则要结合函数的三要素和小例子进行说明。

五、教法与学法分析

1.教法分析

本节课我主要采用教师导学法、知识迁移法和知识对比法,从学生熟悉的丰富实例出发,关注学生的原有的知识基础,注重概念的形成过程,从初中的函数概念自然过度到函数的近代定我。

2.学法分析

在教学过程中我注意在教学中引导学生用模型法分析函数问题、通过自主学习法总结“区间”的知识。

高一数学教案优秀教案篇4

一、教材的地位和作用

本节课是“空间几何体的三视图和直观图”的第一课时,主要内容是投影和三视图,这部分知识是立体几何的基础之一,一方面它是对上一节空间几何体结构特征的再一次强化,画出空间几何体的三视图并能将三视图还原为直观图,是建立空间概念的基础和训练学生几何直观能力的有效手段。另外,三视图部分也是新课程高考的重要内容之一,常常结合给出的三视图求给定几何体的表面积或体积设置在选择或填空中。同时,三视图在工程建设、机械制造中有着广泛应用,同时也为学生进入高一层学府学习有很大的帮助。所以在人们的日常生活中有着重要意义。

二、教学目标

(1)知识与技能:能画出简单空间图形(长方体,球,圆柱,圆锥,棱柱等的简易组合)的三视图,能识别上述三视图表示的立体模型,从而进一步熟悉简单几何体的结构特征。

(2)过程与方法:通过直观感知,操作确认,提高学生的空间想象能力、几何直观能力,培养学生的应用意识。

(3)情感、态度与价值观:让感受数学就在身边,提高学生学习立体几何的兴趣,培养学生相互交流、相互合作的精神。

三、设计思路

本节课的主要任务是引导学生完成由立体图形到三视图,再由三视图想象立体图形的复杂过程。直观感知操作确认是新课程几何课堂的一个突出特点,也是这节课的设计思路。通过大量的多媒体直观,实物直观使学生获得了对三视图的感性认识,通过学生的观察思考,动手实践,操作练习,实现认知从感性认识上升为理性认识。培养学生的空间想象能力,几何直观能力为学习立体几何打下基础。

教学的重点、难点

(一)重点:画出空间几何体及简单组合体的三视图,体会在作三视图时应遵循的“长对正、高平齐、宽相等”的原则。

(二)难点:识别三视图所表示的空间几何体,即:将三视图还原为直观图。

四、学生现实分析

本节首先简单介绍了中心投影和平行投影,中心投影和平行投影是日常生活中最常见的两种投影形式,学生具有这方面的直接经验和基础。投影和三视图虽为高中新增内容,但学生在初中有一定基础,在七年级上册“从不同方向看”的基础上给出了三视图的概念。到了九年级下册则是在介绍了投影后,用投影的方法给出了三视图的概念,这一概念已基本接近了高中的三视图定义,只是在名字上略有差异。初中叫做主视图、左视图、俯视图。进入高中后特别是再次学习和认识了柱、锥、台等几何体的概念后,学生在空间想象能力方面有了一定的提高,所以,给出了正视图、侧视图、俯视图的概念。这些概念的'变化也说明了学生年龄特点和思维差异。

五、教学方法

(1)教学方法及教学手段

针对本节课知识是由抽象到具体再到抽象、空间思维难度较大的特点,我采用的教法是直观教学法、启导发现法。

在教学中,通过创设问题情境,充分调动学生学习的积极性和主动性,并引导启发学生动眼、动脑、动手、同时采用多媒体的教学手段,加强直观性和启发性,解决了教师“口说无凭”的尴尬境地,增大了课堂容量,提高了课堂效率。

(2)学法指导

力争在新课程要求的大背景下组织教学,为学生创设良好的问题情境,留给学生充分的思考空间,在学生的辩证和讨论前提下,发挥教师的概括和引领的作用。

高一数学教案优秀教案篇5

教学目标:

进一步理解指数函数及其性质,能运用指数函数模型,解决实际问题。

教学重点:

用指数函数模型解决实际问题。

教学难点:

指数函数模型的建构。

教学过程:

一、情境创设

1.某工厂今年的年产值为a万元,为了增加产值,今年增加了新产品的研发,预计从明年起,年产值每年递增15%,则明年的产值为万元,后年的产值为万元.若设x年后实现产值翻两番,则得方程。

二、数学建构

指数函数是常见的数学模型,也是重要的数学模型,常见于工农业生产,环境治理以及投资理财等递增的常见模型为=(1+p%)x(p>0);递减的常见模型则为=(1-p%)x(p>0)。

三、数学应用

例1某种放射性物质不断变化为其他,每经过一年,这种物质剩留的质量是原来的84%,写出这种物质的剩留量关于时间的函数关系式。

例2某医药研究所开发一种新药,据检测:如果成人按规定的剂量服用,服药后每毫升血液中的含药量为(微克),与服药后的时间t(小时)之间近似满足如图曲线,其中oa是线段,曲线abc是函数=at的图象。试根据图象,求出函数=f(t)的解析式。

例3某位公民按定期三年,年利率为2.70%的方式把5000元存入银行.问三年后这位公民所得利息是多少元?

例4某种储蓄按复利计算利息,若本金为a元,每期利率为r,设存期是x,本利和(本金加上利息)为元。

(1)写出本利和随存期x变化的函数关系式;

(2)如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和。

(复利是把前一期的利息和本金加在一起作本金,再计算下一期利息的一种计算利息方法)

小结:银行存款往往采用单利计算方式,而分期付款、按揭则采用复利计算.这是因为在存款上,为了减少储户的重复操作给银行带来的工作压力,同时也是为了提高储户的长期存款的积极性,往往定期现年的利息比再次存取定期一年的收益要高;而在分期付款的过程中,由于每次存入的现金存期不一样,故需要采用复利计算方式.比如“本金为a元,每期还b元,每期利率为r”,第一期还款时本息和应为a(1+p%),还款后余额为a(1+p%)-b,第二次还款时本息为(a(1+p%)-b)(1+p%),再还款后余额为(a(1+p%)-b)(1+p%)-b=a(1+p%)2-b(1+p%)-b,……,第n次还款后余额为a(1+p%)n-b(1+p%)n1-b(1+p%)n2-……-b.这就是复利计算方式。

例52000~2002年,我国国内生产总值年平均增长7.8%左右.按照这个增长速度,画出从2000年开始我国年国内生产总值随时间变化的图象,并通过图象观察到2010年我国年国内生产总值约为2000年的多少倍(结果取整数)。

会计实习心得体会最新模板相关文章:

高一的我作文800字优秀8篇

我上高一了作文800字优秀8篇

2024高一政治教学工作总结优秀6篇

高一感动的作文5篇

好作文高一800字5篇

我的未来高一作文5篇

写高一的作文优质5篇

好作文高一800字模板5篇

我的老师作文高一作文5篇

感恩作文600字高一作文5篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    107814

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。